skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vikesland, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. ML Framework for PPCPs fate in WWTPs. 
    more » « less
    Free, publicly-accessible full text available January 30, 2026
  4. Abstract With growing calls for increased surveillance of antibiotic resistance as an escalating global health threat, improved bioinformatic tools are needed for tracking antibiotic resistance genes (ARGs) across One Health domains. Most studies to date profile ARGs using sequence homology, but such approaches provide limited information about the broader context or function of the ARG in bacterial genomes. Here we introduce a new pipeline for identifying ARGs in genomic data that employs machine learning analysis of Protein-Protein Interaction Networks (PPINs) as a means to improve predictions of ARGs while also providing vital information about the context, such as gene mobility. A random forest model was trained to effectively differentiate between ARGs and nonARGs and was validated using the PPINs of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, andEnterobacter cloacae), which represent urgent threats to human health because they tend to be multi-antibiotic resistant. The pipeline exhibited robustness in discriminating ARGs from nonARGs, achieving an average area under the precision-recall curve of 88%. We further identified that the neighbors of ARGs, i.e., genes connected to ARGs by only one edge, were disproportionately associated with mobile genetic elements, which is consistent with the understanding that ARGs tend to be mobile compared to randomly sampled genes in the PPINs. This pipeline showcases the utility of PPINs in discerning distinctive characteristics of ARGs within a broader genomic context and in differentiating ARGs from nonARGs through network-based attributes and interaction patterns. The code for running the pipeline is publicly available athttps://github.com/NazifaMoumi/PPI-ARG-ESKAPE 
    more » « less
  5. Abstract BackgroundWhile there is increasing recognition of numerous environmental contributions to the spread of antibiotic resistance, quantifying the relative contributions of various sources remains a fundamental challenge. Similarly, there is a need to differentiate acute human health risks corresponding to exposure to a given environment, versus broader ecological risk of evolution and spread of antibiotic resistance genes (ARGs) across microbial taxa. Recent studies have proposed various methods of harnessing the rich information housed by metagenomic data for achieving such aims. Here, we introduce MetaCompare 2.0, which improves upon the original MetaCompare pipeline by differentiating indicators of human health resistome risk (i.e., potential for human pathogens to acquire ARGs) from ecological resistome risk (i.e., overall mobility of ARGs across a given microbiome). ResultsTo demonstrate the sensitivity of the MetaCompare 2.0 pipeline, we analyzed publicly available metagenomes representing a broad array of environments, including wastewater, surface water, soil, sediment, and human gut. We also assessed the effect of sequence assembly methods on the risk scores. We further evaluated the robustness of the pipeline to sequencing depth, contig count, and metagenomic library coverage bias through comparative analysis of a range of subsamples extracted from a set of deeply sequenced wastewater metagenomes. The analysis utilizing samples from different environments demonstrated that MetaCompare 2.0 consistently produces lower risk scores for environments with little human influence and higher risk scores for human contaminated environments affected by pollution or other stressors. We found that the ranks of risk scores were not measurably affected by different assemblers employed. The Meta-Compare 2.0 risk scores were remarkably consistent despite varying sequencing depth, contig count, and coverage. ConclusionMetaCompare 2.0 successfully ranked a wide array of environments according to both human health and ecological resistome risks, with both scores being strongly impacted by anthropogenic stress. We packaged the improved pipeline into a publicly-available web service that provides an easy-to-use interface for computing resistome risk scores and visualizing results. The web service is available athttp://metacompare.cs.vt.edu/ 
    more » « less
  6. Abstract Horizontal gene transfer (HGT) occurring within microbiomes is linked to complex environmental and ecological dynamics that are challenging to replicate in controlled settings. Consequently, most extant studies of microbiome HGT are either simplistic experimental settings with tenuous relevance to real microbiomes or correlative studies that assume that HGT potential is a function of the relative abundance of mobile genetic elements (MGEs), the vehicles of HGT. Here we introduce Kairos as a bioinformatic tool deployed in nextflow for detecting HGT events “in situ,” i.e., within a microbiome, through analysis of time-series metagenomic sequencing data. Thein-situframework proposed here leverages available metagenomic data from a longitudinally sampled microbiome to assess whether the chronological occurrence of potential donors, recipients, and putatively transferred regions could plausibly have arisen due to HGT over a range of defined time periods. The centerpiece of the Kairos workflow is a novel competitive read alignment method that enables discernment of even very similar genomic sequences, such as those produced by MGE-associated recombination. A key advantage of Kairos is its reliance on assemblies rather than metagenome assembled genomes (MAGs), which avoids systematic exclusion of accessory genes associated with the binning process. In an example test-case of real world data, use of assemblies directly produced a 264-fold increase in the number of antibiotic resistance genes included in the analysis of HGT compared to analysis of MAGs with MetaCHIP. Further,in silicoevaluation of contig taxonomy was performed to assess the accuracy of classification for both chromosomally- and MGE-derived sequences, indicating a high degree of accuracy even for conjugative plasmids up to the level of class or order. Thus, Kairos enables the analysis of very recent HGT events, making it suitable for studying rapid prokaryotic adaptation in environmental systems without disturbing the ornate ecological dynamics associated with microbiomes. Current versions of the Kairos workflow are available here:https://github.com/clb21565/kairos. 
    more » « less